Application of Deep Neural Network for Gas Source Localization in an Indoor Environment

Author:

Mohd Juffry Zaffry Hadi,Kamarudin Kamarulzaman,Adom Abdul Hamid,Miskon Muhammad Fahmi,Kamarudin Latifah Munirah,Zakaria Ammar,Syed Zakaria Syed Muhammad Mamduh,Abdullah Abdulnasser Nabil

Abstract

Nowadays, the quality of air in the environment has been impacted by the industry. It is important to make sure our ambient air especially in an indoor environment is clean from contaminating particles or harmful gases. Therefore, the air quality inside the indoor environment should be monitored regularly. One of the major problems, when a particular environment has been contaminated by harmful gases, is finding the source of the emission. If the indoor environment has been contaminated by a harmful source it should be instantly localized and eliminated to prevent severe casualties. In this paper, we propose the utilization of synthetic data generated by the Computational Fluid Dynamic (CFD) approach to train the Deep Neural Network (DNN) model called CFD-DNN to perform gas source localization in an indoor environment. The model is capable to locate the contaminated source within a small area of an indoor environment. A total of 361 datasets with different locations of contaminated source release have been obtained using the CFD approach. The obtained dataset was divided into training and testing datasets. The training dataset was used for the model training process while the testing dataset is fed into the model to test model reliability to predict the gas source location. The Euclidian distance equation was used to measure the distance error between the actual and predicted location of the source. The result shows that the model is capable to locate the gas source within a minimum and maximum error of 0.03m to 0.46m respectively.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3