A Lightweight Attentional Shift Graph Convolutional Network for Skeleton-Based Action Recognition

Author:

Li Xianshan,Kang Jingwen,Yang Yang,Zhao Fengda

Abstract

In the field of skeleton-based human behavior recognition, graph convolutional neural networks have made remarkable achievements. However, high precision networks are often accompanied by numerous parameters and computational cost, and their application in mobile devices has considerable limitations. Aiming at the problem of excessive spatiotemporal complexity of high-accuracy methods, this paper further analyzes the lightweight human action recognition model and proposes a lightweight architecture attentional shift graph convolutional network. There are three main improvements in this model. Firstly, shift convolution is a lightweight convolution method that can be combined with graph convolution to effectively reduce its complexity. At the same time, a shallow architecture for multi-stream early fusion is designed to reduce the network scale by merging multi-stream networks and reducing the number of network layers. In addition, the efficient channel attention module is introduced into the model to capture the underlying characteristic information in the channel domain. Experiments are conducted on the three existing skeleton datasets, NTU RGB+D, NTU-120 RGB+D, and Northwestern-UCLA. Results demonstrate that the proposed model is not only competitive in accuracy, but also outperforms current mainstream methods in parameter count and computational cost, and supports running in some devices with limited computing and storage resources.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3