A Cyber Collaborative Protocol for Real-Time Communication and Control in Human-Robot-Sensor Work

Author:

Dusadeerungsikul Puwadol Oak,Nof Shimon Y.

Abstract

Real-time communication and control are essential parts of the Cyber Physical System (CPS) to optimize effective performance and reliability. To gain a sustainable competitive advantage with Automation 5.0, as needed in Work-of-the-Future, this article addresses the concept of real-time communication and control in the case of an agricultural work setting, along with a newly designed Cyber Collaborative Protocol, called CCP-RTC2. The developed protocol aims to minimize information delay and maximize JIN (Just In Need) information sharing, to enable collaborative decisions among system agents. Two experiments are conducted to compare the designed protocol’s performance in agricultural CPS against the current non-CPS practice. The results demonstrate that the CCP-RTC2 is superior compared with current practice in terms of information sharing in a normal operation scenario. When the system obtains an unplanned request, the CCP-RTC2 can integrate such a request to the original work plan while minimizing the system’s objective function (lower is better). Hence, the system has relatively smaller information delays, as well as better timely information shared with system agents that need it.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Collaborative Control Protocol with Artificial Intelligence for Medical Student Work Scheduling;INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL;2024-07-01

2. Human–Robot Collaboration in Modern Agriculture: A Review of the Current Research Landscape;Advanced Intelligent Systems;2024-01-22

3. Conclusions, Challenges, and Emerging Trends;Automation, Collaboration, & E-Services;2024

4. Cyber-Collaborative Protocol for System-of-Systems (CCP-SoS);Automation, Collaboration, & E-Services;2024

5. Cyber-Collaborative Protocols in Precision Agriculture and Agricultural Robotic Systems;Automation, Collaboration, & E-Services;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3