Enhancing Power Grid Data Analysis with Fusion Algorithms for Efficient Association Rule Mining in Large-Scale Datasets

Author:

Sun Qiongqiong

Abstract

Against the backdrop of the rapid development of information technology, the total amount of data has exploded, and efficient association rule mining methods for large-scale datasets have been studied. Conventional rule mining algorithms are subject to electrical constraints when working, and their convergence speed and data noise are currently the main problems they face. In order to accelerate the working process of the algorithm, this study introduces a data warehouse into the K-Means algorithm, and connects the time series and voltage interaction functions with the long-and-short-term memory network for efficient information analysis of power grid data, generating fusion algorithms. The study conducted experiments on the Netloss dataset and simultaneously conducted experiments on three models, including long-and-short-term memory networks, to verify the superiority of the fusion algorithm. Under the same experimental voltage, the circuit power flows of the four models were 0.37, 0.64, 0.79, and 0.82A, respectively, indicating that the algorithm effectively controlled the electrical dataset. Its measurement accuracy was the highest among the four models, at 91.7%. The experimental results show that the fusion algorithm proposed in the study has precise control ability in power grid datasets, and can effectively mine association rules on large-scale datasets.

Publisher

Agora University of Oradea

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3