A New Adaptive Elastic Net Method for Cluster Analysis

Author:

Yi Junyan,Zhao Peixin,Zhang Lei,Yang Gang

Abstract

Clustering is inherently a highly challenging research problem. The elastic net algorithm is designed to solve the traveling salesman problem initially, now is verified to be an efficient tool for data clustering in n-dimensional space. In this paper, by introducing a nearest neighbor learning method and a local search preferred strategy, we proposed a new Self-Organizing NN approach, called the Adaptive Clustering Elastic Net (ACEN) to solve the cluster analysis problems. ACEN consists of the adaptive clustering elastic net phase and a local search preferred phase. The first phase is used to find a cyclic permutation of the points as to minimize the total distances of the adjacent points, and adopts the Euclidean distance as the criteria to assign each point. The local search preferred phase aims to minimize the total dissimilarity within each clusters. Simulations were made on a large number of homogeneous and nonhomogeneous artificial clusters in n dimensions and a set of publicly standard problems available from UCI. Simulation results show that compared with classical partitional clustering methods, ACEN can provide better clustering solutions and do more efficiently.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3