Energy Synchronized Transmission Control for Energy-harvesting Sensor Networks

Author:

Fan ZuzhiORCID,Liu Xiaoli

Abstract

Energy harvesting and recharging techniques have been regarded as a promising solution to ensure sustained operations of wireless sensor networks for longterm applications. To deal with the diversity of energy harvesting and constrained energy storage capability, sensor nodes in such applications usually work in a duty-cycled mode. Consequently, the sleep latency brought by duty-cycled operation is becoming the main challenge. In this work, we study the energy synchronization control problem for such sustainable sensor networks. Intuitively, energy-rich nodes can increase their transmission power in order to improve network performance, while energy-poor nodes can lower transmission power to conserve its precious energy resource. In particular, we propose an energy synchronized transmission control scheme (ESTC) by which each node adaptively selects suitable power levels and data forwarders according to its available energy and traffic load. Based on the large-scale simulations, we validate that our design can improve system performance under different network settings comparing with common uniform transmission power control strategy. Specially, ESTC can enable the perpetual operations of nodes without sacrificing the network lifetime.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy Harvesting Sensors based Internet of Things System for Precision Agriculture;2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM);2022-02-23

2. Energy-Harvesting Wireless Sensor Networks (EH-WSNs);ACM Transactions on Sensor Networks;2018-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3