Approximating the Level Curves on Pascal’s Surface

Author:

Daus Leonard,Jianu Marilena,Nagy Mariana,Beiu Roxana-Mariana

Abstract

It is well-known that in general the algorithms for determining the reliability polynomial associated to a two-terminal network are computationally demanding, and even just bounding the coefficients can be taxing. Obviously, reliability polynomials can be expressed in Bernstein form, hence all the coefficients of such polynomials are fractions of the binomial coefficients. That is why we have very recently envisaged using an extension of the classical discrete Pascal’s triangle (which comprises all the binomial coefficients) to a continuous version/surface. The fact that this continuous Pascal’s surface has real values in between the binomial coefficients makes it appealing as being a mathematical concept encompassing all the coefficients of all the reliability polynomials (which are integers, as resulting from counting processes) and more. This means that, the coefficients of any reliability polynomial can be represented as discrete steps (on level curves of integer values) on Pascal’s surface. The equation of this surface was formulated by means of the gamma function, for which quite a few approximation formulas are known. Therefore, we have started by reviewing many of those results, and have used a selection of those approximations for the level curves problem on Pascal’s surface. Towards the end, we present fresh simulations supporting the claim that some of these could be quite useful, as being both (reasonably) easy to calculate as well as fairly accurate.

Publisher

Agora University of Oradea

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3