User Stress Detection Using Social Media Text: A Novel Machine Learning Approach

Author:

Wan Xiangxuan,Tian Li

Abstract

This paper introduces a novel Attention-based Bidirectional Long Short-Term Memory (Bi- LSTM) model for detecting stress in social media text, aiming to enhance mental health monitoring in the digital age. Utilizing the unique communicative nature of social media, this study employs user-generated content to analyze emotional and stress levels. The proposed model incorporates an attention mechanism with the Bi-LSTM architecture to improve the identification of temporal features and context relationships in text data, which is crucial for detecting stress indicators. This model stands out by dynamically focusing on text segments that significantly denote stress, thereby boosting the detection sensitivity and accuracy. Through rigorous testing against baseline models such as Text-CNN, LSTM, GRU, and standard Bi-LSTM, our method demonstrates superior performance, achieving the highest F1-score of 81.21%. These results underscore its potential for practical applications in mental health monitoring where accurate and timely detection of stress is essential.

Publisher

Agora University of Oradea

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3