Geant4 Simulation of Scatter Radiation Removal: Comparison and Validation of Anti-scatter Grid and Air Gap for X-ray Mammography

Author:

Abstract

Abstract: X-ray mammography modality provides excellent low-contrast resolution images with low scatter radiation, making it the gold standard in diagnosing breast cancer. Anti-scatter grid and air gap techniques are typically used to further minimize the scatter radiation and improve image quality. Thus, Geant4 simulation was used to investigate the effectiveness of these techniques in removing scatter radiation in X-ray mammography. The effectiveness of an anti-scatter grid was evaluated using the Bucky factor, where it linearly increased with increasing the anti-scatter grid ratio. It was found that increasing the grid frequency affects the Bucky factor depending on the design of the grid ratio. This research proved that designing an anti-scatter grid with high grid frequency (80 lp/mm), low grid ratio (2:1), and proper orientation minimized common anti-scatter grid artifacts. The effectiveness of the air gap technique was also evaluated using the air gap dose factor. It increased non-linearly with increasing magnification. This research validated that using smaller pixel sizes and small focal spot sizes improved spatial resolution with magnification. Our simulation validated that the anti-scatter grid and air gap were effective techniques in removing scatter radiation. By comparing these techniques, the anti-scatter grid was more effective in removing scatter radiation at the expense of increasing the radiation absorbed dose with the exception of 2.0 magnification. It’s recommended to be extremely cautious when using 2.0 magnification or a grid ratio higher or equal to 8:1. These parameters may cause the radiation absorbed dose to be increased by several folds. Keywords: Geant4, Gate, X-ray mammography, Scatter removal, Anti-scatter grid, Air gap.

Publisher

Yarmouk University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3