Abstract
Abstract: We constructed the Hamiltonian formulation of continuous field systems with third order. A combined Riemann–Liouville fractional derivative operator is defined and a fractional variational principle under this definition is established. The fractional Euler equations and the fractional Hamilton equations are obtained from the fractional variational principle. Besides, it is shown that the Hamilton equations of motion are in agreement with the Euler-Lagrange equations for these systems. We have examined one example to illustrate the formalism.
Keywords: Fractional derivatives, Lagrangian formulation, Hamiltonian formulation, Euler-lagrange equations, Third-order lagrangian.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献