Development of a Radiometer for Ground-based Ultra Violet (UV)/ Cosmic Particle Characterization

Author:

Abstract

Abstract: The need for high-precision radiometers for the measurement of solar ultraviolet (UV) radiation triggered this research interest. This is due to the quest for the determination of the trends of terrestrial UV trends associated with the depletion of the ozone layer. This work features the development of a radiometer for the characterization of UV and ionizing radiations from the sun reaching the earth surface at a specific location. The radiations were quantified with the aid of a UV radiation sensor, Geiger tubes, a microcontroller and associated devices. Time series and location coordinates were stamped on the data records with the aid of NEO6M Global Positioning System (GPS) modules. The ionizing radiations were characterized in counts per minute (cpm), while the UV index indications were realized from the voltage output (mV) of the UV sensor using a model based on the UV index chart. The results obtained indicate that the UV index ranges from a minimum value of 0 to a maximum value of 3, while the radiation count ranges from a minimum value of 0 to a maximum value of 48 cpm for 3 days. Hence, the status of the ozone layer can be ascertained from a review of a much longer period of data gathering. Keywords: CPM, CSV, FFF, Geiger, GPS, Ionizing, UV.

Publisher

Yarmouk University

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3