Abstract
Abstract: The exact diagonalization method has been used to solve the effective-mass Hamiltonian of a single electron confined parabolically in the GaAs/AlGaAs quantum heterostructure, in the presence of a donor impurity and under the effect of an applied uniform magnetic field. The donor impurity is located at distance (d) along the growth direction which is perpendicular to the motion of the electron in a two-dimensional heterostructure layer. We have investigated the dependence of the magnetization (M) and magnetic susceptibility (χ) of a GaAs/AlGaAs quantum heterostructure nanomaterial on the magnetic field strength (ω_c), confining frequency (ω_o), donor impurity position (d), pressure (P) and temperature (T).
Keywords: Exact diagonalization, Donor impurity, Magnetic field, Magnetization, Magnetic susceptibility, Pressure and temperature.
Subject
General Physics and Astronomy