Fe–Mo/Kaolin Catalyst Optimization and Characterization for the Production of Carbon Nanotube Using the Wet Impregnated Method

Author:

Abstract

Abstract: The synthesis of the bimetallic Fe–Mo/kaolin catalyst for carbon nanotube (CNT) production involves the pre-calcination and calcination processes, employing the wet impregnated method. In the pre-calcination stage, we explored the effects of synthesis parameters such as oven drying temperature, mass of kaolin, and heating time using a 23 factorial experimental design, ultimately obtaining the highest yield sample. In the calcination phase, the effect of temperature and heating time using a 22 factorial experimental design was examined. The as-prepared nanoparticles were characterized by scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS), thermogravimetric analysis (TGA), differential thermal analysis (DTA), x-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET). SEM/TGA revealed a well-dispersed metallic particle on the kaolin support and its ability to maintain high thermal stability. XRD analysis of the catalyst confirmed its crystal nature and the presence of mixed oxides of different intensities, conducive to CNT growth. The optimum yield obtained after oven drying was 75.25%. At the optimum calcination temperature of 300° C and calcination time of 16 hours, BET analysis determined the surface area and pore volume. For kaolin, the surface area and pore volume were 1.932x102 m2/g and 1.762x10-1 cc/g, respectively. The optimal calcine sample showed increment for both the surface area (3.103 x102 m2/g) and the pore volume (2.459 x10-1cc/g) making it more suitable for CNT production. Lastly, statistical analysis showed that heating time, calcination time, temperature, and mass of kaolin have a significant influence on the catalyst yield in CNT. Keywords: catalyst, wet impregnation, optimization, carbon nanotubes.

Publisher

Yarmouk University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3