Can Neural Networks Enhance Physics Simulations?

Author:

Avatavului Cristian-Dumitru,Ifrim Rareș-Cristian,Voncila Mihai

Abstract

The primary objective of this research manuscript is to design, develop, and evaluate an artificial neural network architecture that is capable of emulating and predicting the dynamic interaction patterns manifested during the encounter between two distinct entities. This endeavor is primarily centered around computational learning and understanding of the associated physical impulses that emerge when these objects engage in contact, elucidating the complex physical interplays therein. This process incorporates the strategic use of an extant physics engine to generate the requisite training datasets, thereby providing a robust and comprehensive foundation for neural network training and subsequent performance evaluation. In order to scrutinize and substantiate the effectiveness of the proposed artificial neural network model, this investigation also embarks on a rigorous comparative analysis. The principal focus of this comparison is to juxtapose the results rendered by the trained neural network vis-a-vis those produced by the original physics engine. The goal here is to gauge the precision, reliability, and practicality of the trained model in accurately predicting the physical impulses, thereby demonstrating its potential to stand as a feasible alternative to the traditional physics engine. Despite the initial success of this endeavor, it is worth noting that the proposed neural network system managed to achieve a range of prediction rates, oscillating between 60% and 91%, contingent upon the specific test scenario. While these preliminary results are promising, they elucidate the necessity for further optimization and refinement to bolster the model's performance and prediction accuracy.

Publisher

Asociatia LUMEN

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3