Author:
El-Azab Tamer, ,Hamada M. Y.,El-Metwally H.,
Publisher
Wilmington Scientific Publisher, LLC
Reference33 articles.
1. H. Agiza, E. ELabbasy, H. EL-Metwally and A. Elsadany, Chaotic dynamics of a discrete prey–predator model with holling type Ⅱ, Nonlinear Analysis: Real World Applications, 2009, 10(1), 116–129.
2.
E. S. Allman and J. A. Rhodes, Mathematical models in biology: an introduction, Cambridge University Press, 2004.
3. A. Almutairi, H. El-Metwally, M. Sohaly and I. Elbaz, Lyapunov stability analysis for nonlinear delay systems under random effects and stochastic perturbations with applications in finance and ecology, Advances in Difference Equations, 2021, 2021(1), 1–32.
4. A. A. Berryman, The orgins and evolution of predator-prey theory, Ecology, 1992, 73(5), 1530–1535.
5.
J. Carr, Applications of centre manifold theory, Springer Science & Business Media, 2012, 35.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dynamics of a ricker type predator–prey model;Rendiconti del Circolo Matematico di Palermo Series 2;2024-06-01