Integrated Multiple-Defect Detection and Evaluation of Rail Wheel Tread Images using Convolutional Neural Networks

Author:

Trilla Alexandre,Bob-Manuel John,Lamoureux Benjamin,Vilasis-Cardona Xavier

Abstract

The wheel-rail interface is regarded as the most important factor for the dynamic behaviour of a railway vehicle, affecting the safety of the service, the passenger comfort, and the life of the wheelset asset. The degradation of the wheels in contact with the rail is visibly manifest on their treads in the form of defects such as indentations, flats, cavities, etc. To guarantee a reliable rail service and maximise the availability of the rolling-stock assets, these defects need to be constantly and periodically monitored as their severity evolves. This inspection task is usually conducted manually at the fleet level and therefore it takes a lot of human resources. In order to add value to this maintenance activity, this article presents an automatic Deep Learning method to jointly detect and classify wheel tread defects based on smartphone pictures taken by the maintenance team. The architecture of this approach is based on a framework of Convolutional Neural Networks, which is applied to the different tasks of the diagnosis process including the location of the defect area within the image, the prediction of the defect size, and the identification of defect type. With this information determined, the maintenancecriteria rules can ultimately be applied to obtain the actionable results. The presented neural approach has been evaluated with a set of wheel defect pictures collected over the course of nearly two years, concluding that it can reliably automate the condition diagnosis of half the current workload and thus reduce the lead time to take maintenance action, significantly reducing engineering hours for verification and validation. Overall, this creates a platform or significant progress in automated predictive maintenance of rolling stock wheelsets.

Publisher

PHM Society

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality,Civil and Structural Engineering,Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3