Integration of future maintenance actions in the prediction parameters of the ATLAS COPCO ZR 200 compressor

Author:

TJAHE AGNES VIRGINIE,MTOPI FOTSO Blaise,FOGUE Médard,Zerhouni Noureddine

Abstract

The prediction of several failure modes of an industrial equipment requires the development of prediction systems with several interdependent parameters. The integration of future maintenance actions with this type of prediction system is a major asset for maintenance decision making. This is even more relevant in the event that after having predicted the future occurrence of several failure modes, the maintenance department does not have the necessary resources to correct all the predicted failure modes at once. In this case it becomes necessary to know how much longer the equipment will work if future partial maintenance actions that do not correct all failure modes are implemented. It is to contribute to the resolution of this problem that we propose an architecture integrating the future maintenance actions to the prediction of several interdependent parameters. This architecture is based on the association of Proportional Integral Derivative regulators to Neuro-Fuzzy systems taking into account the four previous instants to predict the next instant. An application is made with accuracies of the order of 70% for the prediction of the phenomena of fouling of the coolers and of the order of 90% for the prediction of the phenomena of clogging of the filters of the ATLAS COPCO compressor, this with Central Processing Unit values not exceeding one minute.

Publisher

PHM Society

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality,Civil and Structural Engineering,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3