Accelerated Life Testing Dataset for Lithium-Ion Batteries with Constant and Variable Loading Conditions

Author:

Fricke Kajetan,Nascimento Renato,Corbetta Matteo,Kulkarni Chetan,Viana Felipe

Abstract

The development of new modes of transportation, such as electric vertical takeoff and landing (eVTOL) aircraft and the use of drones for package and medical delivery, has increased the demand for reliable and powerful electric batteries. The most common batteries in electric-powered vehicles use Lithium-ion (Li-ion). Because of their long cycle life, they are the preferred choice for battery packs deployed over a lifespan of many years. Thus, battery aging needs to be well understood to achieve safe and reliable operation, and life cycle experiments are a crucial tool to characterize the effect of degradation and failure. With the importance of battery durability in mind, we present an accelerated Li-ion battery life cycle data set, focused on a large range of load levels, for batteries composed of two 18650 cells. We tested 26 battery packs grouped by: (i) constant or random loading conditions, (ii) loading levels, and (iii) number of load level changes. Furthermore, we conducted load cycling on second-life batteries, where surviving cells from previously-aged packs were assembled to second-life packs. The goal is to provide the PHM community with an additional data set characterized by unique features. The aggressive load profiles create large temperature increases within the cells. Temperature effects becomes therefore important for prognosis. Some samples are subject to changes in amplitude and number of load levels, thus approaching the level of variability encountered in real operations. Reassembling of survival cells into new packs created additional data that can be used to evaluate the performance of recommissioned batteries. The data set can be leveraged to develop and test models for state-of-charge and state-of-health prognosis. This paper serves as a companion to the data set. It outlines the design of experiment, shows some exemplifying time-series voltage curves and aging data, describes the testbed design and capabilities, and also provides information about the outliers detected thus far. Upon acceptance, the data set will be made available on the NASA Ames Prognostics Center of Excellence Data Repository.  

Publisher

PHM Society

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality,Civil and Structural Engineering,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3