Diagnostics-oriented Model for Automotive SCR-ASC

Author:

Jain Kaushal Kamal,Meckl Peter,Chen Pingen,Yang Kuo

Abstract

This paper presents a diagnostics-oriented aging model for combined Selective Catalytic Reduction (SCR) and Ammonia Slip Catalyst (ASC) system, along with a model-based on-board diagnostic (OBD) method applied to both test-cell data and on-road data from commercial trucks. The key challenge with model development was unavailability of NOx and NH3 measurements between SCR and ASC. Since it would have been very difficult to calibrate both SCR and ASC dynamics without any measurements between SCR and ASC, therefore ASC was modeled using static look-up tables to determine ASC’s NH3 conversion efficiency and its selectivity to NOx and N2O as a function of temperature and flow rate. The traditional three-state single-cell ordinary differential equation (ODE) model was used for SCR. Hot Federal Test Procedure (hFTP) was used to calibrate the model. Cold FTP (cFTP) and Ramped Mode Cycle (RMC) were used for validation. Results show that the SCR-ASC model can capture the aging signatures in tailpipe NOx, NH3, and N2O reasonably well for cFTP, hFTP, and RMC cycles in the testcell data. After slight re-calibration and combining with a simple model for commercial NOx sensor’s cross-sensitivity to NH3, the model works reasonably well for on-road data from commercial trucks. A model-based on-board diagnostic (OBD) method has been presented with enable conditions designed to detect operating conditions suitable for detecting aging signatures, while minimizing false positives and false negatives. The OBD method is applied to both test-cell and real-world truck data with commercial NOx sensors. Results on test-cell data demonstrate the challenges of robust SCR monitoring even on the limited data set used in this work. The model-based enable conditions are shown to be robust but extremely restrictive as the OBD gets enabled at very few points in the test-cell data. Application on truck data showed that the proposed OBD method can be implemented on commercial trucks with limited sensors. In the truck data, the enable conditions were satisfied on many more points than the test-cell data. Results on truck data show encouraging trends between relative degradation level and the number of miles on four trucks. In future work, these trends will be validated using more data from commercial trucks with known aging levels.

Publisher

PHM Society

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality,Civil and Structural Engineering,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3