Author:
Godwin Jamie L.,Matthews Peter
Abstract
The development of electrical control system faults can lead to increased mechanical component degradation, severe reduction of asset performance, and a direct increase in annual maintenance costs. This paper presents a highly accurate data driven classification system for the diagnosis of electrical control system faults, in particular, wind turbine pitch faults. Early diagnosis of these faults can enable operators to move from traditional corrective or time based maintenance policy towards a predictive maintenance strategy, whilst simultaneously mitigating risks and requiring no further capital expenditure. Our approach provides transparent, human-readable rules for maintenance operators which have been validated by an independent domain expert. Data from 8 wind turbines was collected every 10 minutes over a period of 28 months with 10 attributes utilised to diagnose pitch faults. Three fault classes are identified: “no pitch fault”, “potential pitch fault” and “pitch fault established”. Of the turbines, 4 are used to train the system with a further 4 for validation. Repeated random sub-sampling of the majority fault class was used to reduce computational overheads whilst retaining information content and balancing the training and validation sets. A classification accuracy of 85.50% was achieved with 14 human readable rules generated via the RIPPER inductive rule learner. Of these rules, 11 were described as “useful and intuitive” by an independent domain-expert. An expert system was developed utilising the model along with domain knowledge, resulting in a pitch fault diagnostic accuracy of 87.05% along with a 42.12% reduction in pitch fault alarms.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality,Civil and Structural Engineering,Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献