Telemetry Monitoring System with Features Explaining Anomalies Based on Mahalanobis Distance

Author:

Katsube ShunORCID,Sahara Hironori

Abstract

Because satellites cannot be repaired once launched, operators must detect anomalies early and prevent failures before they occur. Thus, satellite telemetry monitoring systems need to alert operators of anomalies and provide them with useful information to deal with these anomalies. However, traditional knowledge-based monitoring systems have the challenges of difficulty in building comprehensive models and a high dependency on experts. In recent years, data-driven approaches have been actively studied with the development of machine learning algorithms. These approaches solve the challenges of knowledge-based methods; however, they are often less capable of explaining anomalies than knowledge-based methods. In this study, we propose the new telemetry monitoring system with feature engineering to explain anomalies. The proposed method realizes identifiability of anomaly types and unusual telemetry by designing features based on moving averages, telemetry periods, waveform differences, and the Mahalanobis distance. We applied the proposed features to artificial and practical abnormal datasets and evaluated their usefulness. The results showed that the proposed method is capable of identifying trend, periodic, and waveform anomalies, specifying the telemetry in which the anomaly occurred and providing the information to operators.

Publisher

PHM Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3