Abstract
Because satellites cannot be repaired once launched, operators must detect anomalies early and prevent failures before they occur. Thus, satellite telemetry monitoring systems need to alert operators of anomalies and provide them with useful information to deal with these anomalies. However, traditional knowledge-based monitoring systems have the challenges of difficulty in building comprehensive models and a high dependency on experts. In recent years, data-driven approaches have been actively studied with the development of machine learning algorithms. These approaches solve the challenges of knowledge-based methods; however, they are often less capable of explaining anomalies than knowledge-based methods. In this study, we propose the new telemetry monitoring system with feature engineering to explain anomalies. The proposed method realizes identifiability of anomaly types and unusual telemetry by designing features based on moving averages, telemetry periods, waveform differences, and the Mahalanobis distance. We applied the proposed features to artificial and practical abnormal datasets and evaluated their usefulness. The results showed that the proposed method is capable of identifying trend, periodic, and waveform anomalies, specifying the telemetry in which the anomaly occurred and providing the information to operators.