Author:
Rahat Mahmoud,Mashhadi Peyman Sheikholharam,Nowaczyk Sławomir,Rognvaldsson Thorsteinn,Taheri Atabak,Abbasi Ataollah
Abstract
The discrepancy in the distribution of source and target domains is usually referred to as a domain shift. It is one of the reasons for the inferior performance of machine learning solutions at deployment. We illustrate that the domain shift issue is pertinent to the readings of the vehicles’ operational sensors. This is due to the fact that these measurements are collected over a period of time and are susceptible to various changes that happen in the meantime. Examples of these changes are usage pattern variations, aging of the vehicles, seasonal shifts, and driver changes. However, domain adversarial neural networks (DANN) have shown promising results to reduce the negative impact of the domain shift. The present study investigates domain adaptation (DA) in the predictive maintenance field by estimating the remaining useful life (RUL) of turbochargers. The devices are operating on a fleet of VOLVO trucks, and the information about their services is collected over four years between 2016 and 2019. The input features to the model are a set of bi-weekly collected measurements called logged vehicle data (LVD). The contributions of this paper are two-fold. First, we propose a new approach for detecting domain (covariate) shift using an autoencoder. Second, we adapt domain adversarial neural networks to the specific application of predicting turbocharger failures. Finally, we deploy a recurrent feature extraction layer in the DANN architecture to incorporate temporal aspect of the data. The experimental results demonstrate the superiority of the proposed method over the traditional approach.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献