Inception Based Deep Convolutional Neural Network for Remaining Useful Life Estimation of Turbofan Engines

Author:

DeVol Nathaniel,Saldana Christopher,Fu Katherine

Abstract

Accurate estimation of the remaining useful life (RUL) is a key component of condition based maintenance (CBM) and prognosis and health management (PHM). Data-based models for the estimation of RUL are of particular interest because expert knowledge of systems is not always available and physical modeling is often not feasible. In this paper, a deep convolutional neural network (CNN) architecture is investigated for its ability to estimate the RUL of turbofan engines. The input to the model is a window of time series data collected from the engine under test. Inputting raw sensor data allows features to be learned instead of manually determined. To incorporate the ability to detect features of differing lengths, inception modules are used in the neural network architecture. The model is trained and tested using the new Commercial Modular Aero-Propulsion System Simulation (N-CMAPSS) data set and high prognosis accuracy was achieved. The developed model was used in the 2021 PHM Society Data Challenge and received second place, further validating its ability to accurately estimate RUL.

Publisher

PHM Society

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shapley-based explainable AI for clustering applications in fault diagnosis and prognosis;Journal of Intelligent Manufacturing;2024-07-29

2. RETRACTED: Remaining life prediction of aircraft engines based on IGOA-LSTM-FNN;Journal of Intelligent & Fuzzy Systems;2024-04-25

3. Fault Prognosis of Turbofan Engines;International Journal of Prognostics and Health Management;2023-08-08

4. Attention-based LSTM for Remaining Useful Life Estimation of Aircraft Engines;IFAC-PapersOnLine;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3