Theoretically Rigorous Approach to Failure Prognosis

Author:

Acuña David,Orchard Marcos

Abstract

For more than twenty years, we have witnessed a continuous and significant growth in the scope and quality of research in Prognostics and Health Management (PHM). Prognostic algorithms and risk assessment metrics naturally play a critical role in this regard, since they provide the necessary information to take preventive measures and avoid catastrophic system failures. Unfortunately, the problem of failure prognostics has been treated many times from a heuristic, and mostly intuitive, standpoint. Indeed, the PHM community has often validated contributions to the state-of-the-art solely based on the performance experienced under specific run-to-failure experiments, and accepted lack of mathematical rigor in the formulation of the prediction problem itself. In this paper, we revisit the fundamentals of the prognostic problem, providing constructive criticism to inconsistencies found in approaches that have been adopted by many researchers within the PHM community. In addition, we propose a rigorous mathematical framework for failure prognostics, introducing failure probability measures for both discrete- and continuous-time dynamical systems that truly formalize the prognostic problem. We further discuss the philosophical implications of these novel notions in the context of a paradigm change, using as an illustrative example the problem of Lithium-Ion battery condition monitoring.

Publisher

PHM Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3