Experimental Results of Acoustic Emission Attenuation Due toWave Propagation in Composites

Author:

Wirtz Sebastian Felix,Bach Stefan,Söffker DirkORCID

Abstract

Recently, acoustic emission-based damage classification schemes gained attention for health monitoring of composites. Here, the reliable detection of different micro-mechanical damage mechanisms is important because of the adverse effect on fatigue life. It is well known that classical parameters obtained from acoustic emission measurements in time domain are strongly dependent on the propagation path and testing conditions. However, signal attenuation, which can be observed due to geometric spreading, material-related damping, and dispersion, is typically neglected. Therefore, it is generally assumed that frequency domain features are reliable descriptors of damage due to invariance of peak frequencies to the propagation path. Based on this assumption, several data-driven approaches for damage detection are developed. However, in contrast to metallic materials, where low attenuation is observed, acoustic emission signals are strongly attenuated in polymer matrix composites due to viscoelastic behavior of the matrix. For instance, it is reported in literature that at high frequencies most of the acoustic emission signal energy is attenuated after a propagation distance of 250~mm. Therefore, new experimental results of acoustic emission attenuation in composites are presented in this paper. Particular focus is placed on the frequency dependence of acoustic emission attenuation and the effect of different loading conditions. The specimens are manufactured from aerospace material. Carbon fiber reinforced polymer plates are used as a typical specimen geometry. Different acoustic emission sources are considered and the related attenuation coefficients are determined. Furthermore, full waveform data are analyzed in time and time-frequency domain using wavelet transform. From the experimental results it can be concluded that consideration of wave propagation-related signal attenuation is important for the interpretation of acoustic emission measurements for health monitoring of composites. Consequently, the impact on the detectability of different physical damage mechanisms using data-driven classification approaches has to be considered.

Publisher

PHM Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3