RESEARCH: Fluorescence Microscopy–Based Protocol for Detecting Residual Bacteria on Medical Devices

Author:

Wong Michael,Wang Yi,Wang Hao,Marrone April K.,Haugen Shanil P.,Kulkarni Kaumudi,Basile Ralph,Phillips K. Scott

Abstract

Standard methods are needed to reliably and efficiently assess bacterial contamination of processed medical devices. This article demonstrates a standard operating procedure (SOP) for fluorescence microscopy–based detection of residual bacteria on medical devices (BAC-VIS). BAC-VIS uses a 4',6-diamidino-2-phenylindole (DAPI) stain with fluorescent microscopy to quickly and cost-effectively detect bacterial contamination of processed medical device parts. The BAC-VIS protocol was optimized and achieved greater than 80% staining efficiency and a signal-to-noise ratio of more than 20 using four representative organisms. The SOP was first validated for use on a buildup biofilm model, accessory channels of contaminated clinically used devices, and inoculated endoscope end caps and O-rings. The buildup biofilm model was used to evaluate BAC-VIS after repeated treatment of adherent bacteria with three common high-level disinfectants: glutaraldehyde, ortho-phthalaldehyde, and peracetic acid. Next, BAC-VIS was used to assess clinically used endoscope parts that cultured positive for Gram-negative bacteria. DAPI-stained cells were found on all culture-positive devices, especially in grooves and imperfections on the surface. Finally, BAC-VIS was used to detect bacteria on inoculated endoscope device components. The results showed potential for BAC-VIS to be a valuable tool for industry and academic/medical researchers for investigations of contaminated medical devices. Results obtained using BAC-VIS can increase understanding of the role of design in cleanability, wear, and prevention of contamination and may lead to improvements in materials and design that could make processed endoscope use safer for patients. Of note, this protocol is not for detecting bacteria on scopes or scope parts that will be put back into clinical use.

Publisher

Association for the Advancement of Medical Instrumentation (AAMI)

Subject

Computer Networks and Communications,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3