THE EVALUATION OF THE RGB AND MULTISPECTRAL CAMERA ON THE UNMANNED AERIAL VEHICLE (UAV) FOR THE MACHINE LEARNING CLASSIFICATION OF MAIZE

Author:

Jurišić Mladen, ,Radočaj Dorijan,Plaščak Ivan,Galić Subašić Daria,Petrović Davor

Abstract

This study investigated a crop and soil classification applying the Random Forest machine learning algorithm based on the red-green-blue (RGB) and multispectral sensor imaging deploying an unmanned aerial vehicle (UAV). The study area covered two 10 x 10 m subsets of a maize-sown agricultural parcel near Koška. The highest overall accuracy was obtained in the combination of the red edge (RE), near-infrared (NIR), and normalized difference vegetation index (NDVI) in both subsets, with a 99.8% and 91.8% overall accuracy, respectively. The conducted analysis proved that the RGB camera obtained sufficient accuracy and was an acceptable solution to the soil and vegetation classification. Additionally, a multispectral camera and spectral analysis allowed for a more detailed analysis, primarily of the spectrally similar areas. Thus, this procedure represents a basis for both the crop density calculation and weed detection while deploying an unmanned aerial vehicle. To ensure crop classification effectiveness in practical application, it is necessary to further integrate the weed classes in the current vegetation class and separate them into crop and weed classes.

Publisher

Faculty of Agrobiotechnical Sciences Osijek

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3