Dynamics of sugar beet root, crown and leaves mass with regard to plant densities and spring nitrogen fertilization

Author:

Varga Ivana1ORCID,Lončarić Zdenko1ORCID,Pospišil Milan2ORCID,Rastija Mirta1ORCID,Antunović Manda1ORCID

Affiliation:

1. Josip Juraj Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, V. Preloga 1, 31000 Osijek, Croatia

2. University of Zagreb, Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia

Abstract

This study analyzes the dynamics of sugar beet root, crown, and leaves fresh and dry matter (FM and DM, respectively) accumulation per plant and their mass ratio at different plant densities and nitrogen fertilization. The biennial field trials were set as four different planting densities (60,000, 80,000, 100,000 and 140,000 plants ha-1) and three methods of nitrogen application in spring: control – without nitrogen fertilization (N0), presowing only (N1), and presowing with topdressing (N2). Close to the maturation, the mean DM of the whole root, crown, and leaves on September 20, 2014 amounted to 28.8, 7.3 and 4.0 t ha-1, respectively, whereas it amounted to 20.7, 4.1 and 2.3 t ha-1 in 2015, respectively. Moreover, with regard to the plant densities, the highest root DM was at 140,000 and 100,000 (31.6 t ha-1 in 2014 and 22.4 t ha-1 in 2015), compared to the wider plant densities of 80,000 and 60,000 plants ha-1 (22.4 t ha-1 in 2014 and 18.1 t ha-1 in 2015). Nitrogen fertilization positively influenced on dry matter accumulation, but it was different within the years. On September 20, 2014, a presowing fertilization (N1) increased the root DM by 17%, compared to the control, whereas in 2015 the presowing with topdressing (N2) increased the root DM by 30%. The root-to-leaves FM ratio amounted to 1:3.9 on May 30, 2014, whereas it amounted to 1:0.1 on September 20, 2014. The leaves FM was at its largest on June 20, 2015, when the root-to-leaves ratio amounted to 1:1.1, and gradually decreased to 1:0.1 on September 20, 2015.

Publisher

Faculty of Agrobiotechnical Sciences Osijek

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3