A Machine-Learning Approach for the Assessment of Quantitative Changes in the Tractor Diesel-Engine Oil During Exploitation

Author:

Radočaj Dorijan1ORCID,Plaščak Ivan1ORCID,Jurišić Mladen1ORCID

Affiliation:

1. Josip Juraj Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek

Abstract

To evaluate the potential of a machine-learning approach in the assessment of quantitative changes in the tractor diesel-engine oil during exploitation, this study aspired to propose a machine-learning regression method to reduce the frequency of expensive and time–consuming engine oil sampling. The input engine-oil datasets with fresh engine oil (Samples A) and with the engine oil subsequent to 250 working hours (Samples B) were sampled for twelve elements in a two–year exploitation study at the Belje company. The field data collection was performed having deployed six heavy, four–wheel-drive FENDT 930 Vario agricultural tractors, each monitored for 1,500 working hours, during which an engine oil was sampled every 250 working hours. The evaluated machine-learning prediction methods, based on a tenfold cross–validation, achieved a moderately high prediction accuracy, with a slightly higher coefficient of determination (R2), in the range of 0.51–0.73, for the Samples B, than those in the range of 0.49–0.64 for the Samples A. These results strongly suggest that none of the machine learning methods constantly achieved high prediction accuracy and that the selection of optimal machine-learning models should be mandatory, having also confirmed a high potential of machine-learning methods in the detection of quantitative changes in tractor diesel-engine oil during exploitation.

Publisher

Faculty of Agrobiotechnical Sciences Osijek

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3