Challenges of Industry 4.0 in Hungarian agriculture

Author:

Lencsés Enikő1ORCID,Mészáros Kornélia1ORCID

Affiliation:

1. Hungarian University of Agriculture and Life Sciences

Abstract

Although the technological revolutions in agricultural production are already at stage 5.0, the majority of Hungarian farmers are familiar with the achievements of 4.0 in theory, but most of them still use only elements of stage 2.0. The range of BigData applications goes far beyond production itself and even covers the entire supply chain. It plays a role in global issues such as food safety and sustainable management, and the results of the data from the system are used to improve efficiency. The development of the Internet of Things (IoT), which wirelessly connects agricultural production and supply chain members, will result in a lot of new, realtime data. An important challenge for these changes is to create new business models for farmers, but it also brings with it a number of open regulatory issues, such as data security and data ownership issues. Decision-making issues do not necessarily remain in the hands of farmers, but the data owner can have a major influence on the design and selection of alternatives. Sustainable integration of Big Data resources is a challenge, as it is crucial for the enterprise model. In order to introduce and apply new technologies, it is absolutely necessary to rethink and transform the existing processes. Developments should not be done in isolation, but together with innovative companies and farmers. It is important to keep in mind that in the future, the collection and sharing of data and the different work tools will be compatible with each other, and data transfer will be as simple as possible, keeping security in mind. The present study examines the theoretical effects of BigData applications in comparison to business models used in conventional technology along the business model research issue based on Lindgradt et al. (2009).

Publisher

Szegedi Tudományegyetem Gazdaságtudományi Kar

Reference28 articles.

1. Agronapló (2018): A precíziós technológia hazai elterjedésének legfőbb gátjai, Agronapló, 2018. 04. 10., https://www.agronaplo.hu/szakfolyoirat/2018/04/gepesites/ a-preciziostechnologia-hazai-elterjedesenek-legfobb-gatjai

2. Amit, R. - Zott, C. (2012): Creating value through business model innovation. MIT Sloan Management Review, 5, 3, 41-44.

3. Berta O. (2018): Információs technológiák használata a magyar mezőgazdasági vállalkozások menedzsmentjében: avagy egy digitális agrárgazdasági kutatásereményei. Gazdálkodás, 62, 4, 337-352.

4. Farm Accountancy Data Network (FADN): https://circabc.europa.eu/sd/a/16d411ec33fe-404b-ab4cefcfdbbf9935/RICC%20882%20rev9.2%20Definitions%20of%20Variables.

5. Dove, R. (1994): Agile and otherwise, series of articles on agile manufacturing. Production Magazine, November.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3