Mathematical modelling and experimentation of soy wax PCM solar tank using response surface method

Author:

Ghabour Rajab1ORCID,Korzenszky Péter2ORCID

Affiliation:

1. Mechanical Engineering Doctoral School, Szent István University

2. Institute of Machinery and Informatics, Faculty of Mechanical Engineering, Szent István University, Gödöllő, Hungary

Abstract

Worldwide, governments tend to reduce the CO2 emissions, and the storage of the solar energy system is still considered the most challenging problem to solve under the current state. Mainly, in relatively cold countries, as domestic hot water or for heat process services, where the loss in the tank is huge. Any improvement in the design can achieve a higher solar yield. Since water is the usual medium for heat storage, the integration with phase change material (PCM) can store energy when there is abundant energy and release it when it is needed. In this study, we conducted a capsulated PCM soy wax 52⁰C in an insulated water tank filled with 5 litres of water. To estimate the appropriate number of samples and the quantity of the PCM at two temperature levels using the response surface method with non-linear correlation for the charging phase. The results show 3.16, 0.95, 0.38 first degree magnitude effect for temperature, sample numbers, and wax quantity respectively and 0.29, -0.38 second-degree magnitude effect for quantity and temperature. In addition, an illustration of each two-factors interaction contour plots.  

Publisher

University of Szeged

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and measurement methods for multi-source heat pumps;Science, Technology and Innovation;2021-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3