Stability results for the functional differential equations associated to water hammer in hydraulics

Author:

Rasvan Vladimir1ORCID

Affiliation:

1. University of Craiova

Abstract

There is considered a system of two sets of partial differential equations describing the water hammer in a hydroelectric power plant containing the dynamics of the tunnel, turbine penstock, surge tank and hydraulic turbine. Under standard simplifying assumptions (negligible Darcy–Weisbach losses and dynamic head variations), a system of functional differential equations of neutral type, with two delays, can be associated to the aforementioned partial differential equations and existence, uniqueness and continuous data dependence can be established. Stability is then discussed using a Lyapunov functional deduced from the energy identity. The Lyapunov functional is "weak" i.e. its derivative function is only non-positive definite. Therefore only Lyapunov stability is obtained while for asymptotic stability application of the Barbashin–Krasovskii–LaSalle invariance principle is required. A necessary condition for its validity is the asymptotic stability of the difference operator associated to the neutral system. However, its properties in the given case make the asymptotic stability non-robust (fragile) in function of some arithmetic properties of the delay ratio.

Publisher

University of Szeged

Subject

Applied Mathematics

Reference41 articles.

1. V. E. Abolinia, A. D. Myshkis, Mixed problem for an almost linear hyperbolic system in the plane (in Russian), Mat. Sbornik 50:92(1960), No. 4, 423--442.

2. A. A. Andronov, S. E. Khaikin, A. A. Vitt, Theory of oscillators, Dover Publications, New York, 1966.

3. G. V. Aronovich, N. A. Kartvelishvili, Ya. K. Lyubimtsev, Water hammer and surge tanks (in Russian), Nauka, Moscow USSR, 1968.

4. Perturbations of nonlinear systems of differential equations

5. Perturbations of nonlinear systems of differential equations. II

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3