Structural stability for scalar reaction-diffusion equations

Author:

Lee Jihoon1,Pires Leonardo2ORCID

Affiliation:

1. Chonnam National University

2. State University of Ponta Grossa

Abstract

In this paper, we prove the structural stability for a family of scalar reaction-diffusion equations. Our arguments consist of using invariant manifold theorem to reduce the problem to a finite dimension and then, we use the structural stability of Morse–Smale flows in a finite dimension to obtain the corresponding result in infinite dimension. As a consequence, we obtain the optimal rate of convergence of the attractors and estimate the Gromov–Hausdorff distance of the attractors using continuous $\varepsilon$-isometries.

Publisher

University of Szeged

Reference14 articles.

1. J. M. Arrieta, F. D. M. Bezerra, A. N. Carvalho, Rate of convergence of global attractors of some perturbed reaction-diffusion problems, Topol. Methods Nonlinear Anal. 2(2013), 229--253.

2. $$C^{1,\theta }$$ C 1 , θ -Estimates on the distance of inertial manifolds

3. Distance of attractors of reaction-diffusion equations in thin domains

4. Estimates on the distance of inertial manifolds

5. Attractors for infinite-dimensional non-autonomous dynamical systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3