Detecting Uninitialized Variables in C++ with the Clang Static Analyzer

Author:

Umann KristófORCID,Porkoláb ZoltánORCID

Abstract

Uninitialized variables have been a source of errors since the beginning of software engineering. Some programming languages (e.g. Java and Python) will automatically zero-initialize such variables, but others, like C and C++, leave their state undefined. While laying aside initialization in C and C++ might be a performance advantage if an initial value can't be supplied, working with such variables is an undefined behavior, and is a common source of instabilities and crashes. To avoid such errors, whenever meaningful initialization is possible, it should be used. Tools for detecting these errors run time have existed for decades, but those require the problematic code to be executed. Since in many cases the number of possible execution paths are combinatoric, static analysis techniques emerged as an alternative. In this paper, we overview the technique for detecting uninitialized C++ variables using the Clang Static Analyzer, and describe various heuristics to guess whether a specific variable was left in an undefined state intentionally. We implemented a prototype tool based on our idea and successfully tested it on large open source projects.

Publisher

University of Szeged

Subject

Computer Vision and Pattern Recognition,Software,Computer Science (miscellaneous),Electrical and Electronic Engineering,Information Systems and Management,Management Science and Operations Research,Theoretical Computer Science

Reference33 articles.

1. Apache Software Foundation. Apache Xerces. https://xerces.apache.org/

2. A Comparison of Open-Source Static Analysis Tools for Vulnerability Detection in C/C++ Code

3. Bakken, Anders. Rtags. http://www.rtags.net

4. Practical memory checking with Dr. Memory

5. Moving fast with software verification

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Applicability of Static Analysis for System Software using CodeChecker;2024 7th International Conference on Software and System Engineering (ICoSSE);2024-04-19

2. Automatic Static Vulnerability Detection for Machine Learning Libraries: Are We There Yet?;2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE);2023-10-09

3. Code Comprehension for Read-Copy-Update Synchronization Contexts in C Code;Geoinformatics and Data Analysis;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3