Symbolic Regression for Approximating Graph Geodetic Number

Author:

Anaqreh Ahmad T.ORCID,G.-Tóth BoglárkaORCID,Vinkó TamásORCID

Abstract

Graph properties are certain attributes that could make the structure of the graph understandable. Occasionally, standard methods cannot work properly for calculating exact values of graph properties due to their huge computational complexity, especially for real-world graphs. In contrast, heuristics and metaheuristics are alternatives proved their ability to provide sufficient solutions in a reasonable time. Although in some cases, even heuristics are not efficient enough, where they need some not easily obtainable global information of the graph. The problem thus should be dealt in completely different way by trying to find features that related to the property and based on these data build a formula which can approximate the graph property. In this work, symbolic regression with an evolutionary algorithm called Cartesian Genetic Programming has been used to derive formulas capable to approximate the graph geodetic number which measures the minimal-cardinality set of vertices, such that all shortest paths between its elements cover every vertex of the graph. Finding the exact value of the geodetic number is known to be NP-hard for general graphs. The obtained formulas are tested on random and real-world graphs. It is demonstrated how various graph properties as training data can lead to diverse formulas with different accuracy. It is also investigated which training data are really related to each property.

Publisher

University of Szeged

Subject

Computer Vision and Pattern Recognition,Software,Computer Science (miscellaneous),Electrical and Electronic Engineering,Information Systems and Management,Management Science and Operations Research,Theoretical Computer Science

Reference32 articles.

1. On the forcing connected geodetic number and the connected geodetic number of a graph;Ahangar;Ars Combinatoria,2016

2. Statistical mechanics of complex networks

3. Algorithmic upper bounds for graph geodetic number

4. Eigenvalues of the Laplacian of a graph∗

5. Computational Complexity of Geodetic Set

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3