Towards a Block-Level ML-Based Python Vulnerability Detection Tool

Author:

Bagheri Amirreza1ORCID,Hegedűs Péter1ORCID

Affiliation:

1. University of Szeged

Abstract

Computer software is driving our everyday life, therefore their security is pivotal. Unfortunately, security flaws are common in software systems, which can result in a variety of serious repercussions, including data loss, secret information disclosure, manipulation, or system failure. Although techniques for detecting vulnerable code exist, the improvement of their accuracy and effectiveness to a practically applicable level remains a challenge. Many existing methods require a substantial amount of human expert labor to develop attributes that indicate vulnerabilities. In previous work, we have shown that machine learning is suitable for solving the issue automatically by learning features from a vast collection of real-world code and predicting vulnerable code locations. Applying a BERT-based code embedding, LSTM models with the best hyperparameters were able to identify seven different security flaws in Python source code with high precision (average of 91%) and recall (average of 83%). Upon the encouraging first empirical results, we go beyond this paper and discuss the challenges of applying these models in practice and outlining a method that solves these issues. Our goal is to develop a hands-on tool for developers that they can use to pinpoint potentially vulnerable spots in their code.

Funder

National Research, Development and Innovation Fund

Publisher

University of Szeged

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3