Bioelectricity production in an indoor plant-microbial biotechnological system with Alisma plantago-aquatica

Author:

Rusyn Iryna B.,Hamkalo Кhrystyna R.

Abstract

The paper descibes the development of a biotechnological system for generating bioelectricity on closed balconies of buildings from living plants Alisma plantago-aquatica and soil microorganisms grown in containers with natural wetland substrate, provided with a graphite and Zn-galvanized steel electrode system. This biotechnology worked efficiently from the first days after installation and was practically at full capacity 2 weeks later. Electric power output was highest in the spring-summer and the early autumn period (at the time of the highest photosynthetic activity of plants). The highest current output was 58.6 mA at 10 Ω load. Bioelectricity generation by the biosystem was stable with slight fluctuations throughout the year in well-lighted and heated premises at a temperature of 21-26 °C, and the seasonal reduction of the bioelectricity level was 8.71%. On not-heated closed terraces and glazed balconies, with temperature fluctuations from 5 to 26 °C, the electricity production decreased in the winter period by 19.98% and 39.91% with and without adding of sulfate-reducing bacteria, respectively. The proposed system of electrodes for collection of bioelectric power is new, easy to manufacture and economical. It is resistant to waterlogged environment, and has good prospects for further improvements for more effective collection of plant-microbial bioelectricity. Maintainance of the biosystem is simple and accessible to everyone without special skills.

Publisher

University of Szeged

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference46 articles.

1. Behera BK, Varma A (2016) Microbial Resources for Sustainable Energy. Springer International Publishing, Switzerland.

2. Oligonitrophile microbes.;Beijerinck;Zentr Bakt Parasitenk,1901

3. Green roofs; building energy savings and the potential for retrofit;Castleton;Energ Buildings,2010

4. A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere;Chen;Bioresour Technol,2012

5. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing;Cheng;Environ Bioelectricity production with Alisma plantago-aquatica 178 Sci Technol,2006

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3