1. [1] Kazinczy L.: Wheel rail Hertzian contact investigation in case of vehicular train structure. BME, Budapest, 2017. www.epa.uz.ua/00000/00028/00005/pdf/2.pdf
2. [2] Nyikes Z., Tokody D., Kovács T.: In situ testing of rail damages in accordance with Industry 4.0. Journal of Physics: Conference Series 1045. (2018) 012032, IOP Publishing. http://doi.org/10.1088/1742-6596/1045/1/01203210.1088/1742-6596/1045/1/012032
3. [3] Aglan H. A., Fateh M.: Fracture and Fatigue Crack Growth Analysis of Rail Steels, Journal of Mechanics of Materials and Structures 2/2. (2007) 335–346. https://msp.org/jomms/2007/2-2/jomms-v2-n2-p08-p.pdf10.2140/jomms.2007.2.335
4. [4] Mester Gy. Pletl, S., Pajor G., Rudas I.: Adaptive Control of Robot Manipulators with Fuzzy Supervisor Using Genetic Algorithms. Proceedings of International Conference on Recent Advances in Mechatronics (ICRAM’95) (ed.: Kaynak O.), Istanbul, Turkey, 2. (1995) 661–666.
5. [5] Mester Gy., Pletl Sz., Pajor G., Jeges Z.: Flexible Planetary Gear Drives in Robotics. Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation and Automation - Robotics, CIM and Automation, Emerging Technologies (IEEE IECON ‘92), San Diego, California, USA, 2. (1992) 646–649. http://doi.org/10.1109/IECON.1992.25455610.1109/IECON.1992.254556