Abstract
We consider a critical discrete-time branching process with generation dependent immigration. For the case in which the mean number of immigrating individuals tends to ∞ with the generation number, we prove functional limit theorems for centered and normalized processes. The limiting processes are deterministically time-changed Wiener, with three different covariance functions depending on the behavior of the mean and variance of the number of immigrants. As an application, we prove that the conditional least-squares estimator of the offspring mean is asymptotically normal, which demonstrates an alternative case of normality of the estimator for the process with nondegenerate offspring distribution. The norming factor is where α(n) denotes the mean number of immigrating individuals in the nth generation.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献