Abstract
We consider a repairable system with a finite state space which evolves in time according to a Markov process as long as it is working. We assume that this system is getting worse and worse while running: if the up-states are ranked according to their degree of increasing degradation, this is expressed by the fact that the Markov process is assumed to be monotone with respect to the reversed hazard rate and to have an upper triangular generator. We study this kind of process and apply the results to derive some properties of the stationary availability of the system. Namely, we show that, if the duration of the repair is independent of its completeness degree, then the more complete the repair, the higher the stationary availability, where the completeness degree of the repair is measured with the reversed hazard rate ordering.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献