Author:
Boxma Onno,Perry David,Stadje Wolfgang,Zacks Shelemyahu
Abstract
We consider growth-collapse processes (GCPs) that grow linearly between random partial collapse times, at which they jump down according to some distribution depending on their current level. The jump occurrences are governed by a state-dependent rate function r(x). We deal with the stationary distribution of such a GCP, (Xt)t≥0, and the distributions of the hitting times Ta = inf{t ≥ 0 : Xt = a}, a > 0. After presenting the general theory of these GCPs, several important special cases are studied. We also take a brief look at the Markov-modulated case. In particular, we present a method of computing the distribution of min[Ta, σ] in this case (where σ is the time of the first jump), and apply it to determine the long-run average cost of running a certain Markov-modulated disaster-ridden system.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献