Abstract
In a unified approach, this paper presents distributional properties of a Voronoi tessellation generated by a homogeneous Poisson point process in the Euclidean space of arbitrary dimension. Probability density functions and moments are given for characteristics of the ‘typical’ edge in lower-dimensional section hyperplanes (edge lengths, adjacent angles). We investigate relationships between edges and their neighbours, called Poisson points or centres; namely angular distributions, distances, and positions of neighbours relative to the edge. The approach is analytical, and the results are given partly explicitly and partly as integral expressions, which are suitable for the numerical calculations also presented.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献