Author:
Angulo J. M.,Ruiz-Medina M. D.
Abstract
The linear inverse problem of estimating the input random field in a first-kind stochastic integral equation relating two random fields is considered. For a wide class of integral operators, which includes the positive rational functions of a self-adjoint elliptic differential operator on L2(ℝd), the ill-posed nature of the problem disappears when such operators are defined between appropriate fractional Sobolev spaces. In this paper, we exploit this fact to reconstruct the input random field from the orthogonal expansion (i.e. with uncorrelated coefficients) derived for the output random field in terms of wavelet bases, transformed by a linear operator factorizing the output covariance operator. More specifically, conditions under which the direct orthogonal expansion of the output random field coincides with the integral transformation of the orthogonal expansion derived for the input random field, in terms of an orthonormal wavelet basis, are studied.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献