Author:
Heinrich Lothar,Molchanov Ilya S.
Abstract
The germ-grain model is defined as the union of independent identically distributed compact random sets (grains) shifted by points (germs) of a point process. The paper introduces a family of stationary random measures in ℝd generated by germ-grain models and defined by the sum of contributions of non-overlapping parts of the individual grains. The main result of the paper is the central limit theorem for these random measures, which holds for rather general independently marked germ-grain models, including those with non-Poisson distribution of germs and non-convex grains. It is shown that this construction of random measures includes those random measures obtained by positively extended intrinsic volumes. In the Poisson case it is possible to prove a central limit theorem under weaker assumptions by using approximations by m-dependent random fields. Applications to statistics of the Boolean model are also discussed. They include a standard way to derive limit theorems for estimators of the model parameters.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献