On the algebraic structure in Markovian processes of death and epidemic types

Author:

Picard Philippe,Lefèvre Claude

Abstract

This paper is concerned with the standard bivariate death process as well as with some Markovian modifications and extensions of the process that are of interest especially in epidemic modeling. A new and powerful approach is developed that allows us to obtain the exact distribution of the population state at any point in time, and to highlight the actual nature of the solution. Firstly, using a martingale technique, a central system of relations with two indices for the temporal state distribution will be derived. A remarkable property is that for all the models under consideration, these relations exhibit a similar algebraic structure. Then, this structure will be exploited by having recourse to a theory of Abel-Gontcharoff pseudopolynomials with two indices. This theory generalizes the univariate case examined in a preceding paper and is briefly introduced in the Appendix.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SIR-Type Epidemic Models as Block-Structured Markov Processes;Methodology and Computing in Applied Probability;2019-04-03

2. SIR Epidemic Models;Wiley StatsRef: Statistics Reference Online;2014-09-29

3. SIR Epidemic Models;Encyclopedia of Biostatistics;2005-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3