Abstract
Let Xi : i ≥ 1 be i.i.d. points in ℝd, d ≥ 2, and let Tn be a minimal spanning tree on X1,…,Xn. Let L(X1,…,Xn) be the length of Tn and for each strictly positive integer α let N(X1,…,Xn;α) be the number of vertices of degree α in Tn. If the common distribution satisfies certain regularity conditions, then we prove central limit theorems for L(X1,…,Xn) and N(X1,…,Xn;α). We also study the rate of convergence for EL(X1,…,Xn).
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献