Author:
Roy Rahul,Tanemura Hideki
Abstract
We consider the Poisson Boolean model of percolation where the percolating shapes are convex regions. By an enhancement argument we strengthen a result of Jonasson (2000) to show that the critical intensity of percolation in two dimensions is minimized among the class of convex shapes of unit area when the percolating shapes are triangles, and, for any other shape, the critical intensity is strictly larger than this minimum value. We also obtain a partial generalization to higher dimensions. In particular, for three dimensions, the critical intensity of percolation is minimized among the class of regular polytopes of unit volume when the percolating shapes are tetrahedrons. Moreover, for any other regular polytope, the critical intensity is strictly larger than this minimum value.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献