Author:
Chen May-Ru,Chung Pei-Shou,Hsiau Shoou-Ren,Yao Yi-Ching
Abstract
In the subfair red-and-black gambling problem, a gambler can stake any amount in his possession, winning an amount equal to the stake with probability w and losing the stake with probability 1 − w, where 0 < w < ½. The gambler seeks to maximize the probability of reaching a fixed fortune (to be normalized to unity) by gambling repeatedly with suitably chosen stakes. In their classic work, Dubins and Savage (1965), (1976) showed that it is optimal to play boldly. When there is a house limit of l (0 < l < ½), so that the gambler can stake no more than l, Wilkins (1972) showed that bold play remains optimal provided that 1 / l is an integer. On the other hand, building on an earlier surprising result of Heath, Pruitt and Sudderth (1972), Schweinsberg (2005) recently showed that, for all irrational 0 < l < ½ and all 0 < w < ½, bold play is not optimal for some initial fortune. The purpose of the present paper is to present several results supporting the conjecture that, for all rational l with 1 / l not an integer and all 0 < w < ½, bold play is not optimal for some initial fortune. While most of these results are based on Schweinsberg's method, in a special case where his method is shown to be inapplicable, we argue that the conjecture can be verified with the help of symbolic-computation software.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献