Composition Markov chains of multinomial type

Author:

Zhou Hua,Lange Kenneth

Abstract

Suppose that n identical particles evolve according to the same marginal Markov chain. In this setting we study chains such as the Ehrenfest chain that move a prescribed number of randomly chosen particles at each epoch. The product chain constructed by this device inherits its eigenstructure from the marginal chain. There is a further chain derived from the product chain called the composition chain that ignores particle labels and tracks the numbers of particles in the various states. The composition chain in turn inherits its eigenstructure and various properties such as reversibility from the product chain. The equilibrium distribution of the composition chain is multinomial. The current paper proves these facts in the well-known framework of state lumping and identifies the column eigenvectors of the composition chain with the multivariate Krawtchouk polynomials of Griffiths. The advantages of knowing the full spectral decomposition of the composition chain include (a) detailed estimates of the rate of convergence to equilibrium, (b) construction of martingales that allow calculation of the moments of the particle counts, and (c) explicit expressions for mean coalescence times in multi-person random walks. These possibilities are illustrated by applications to Ehrenfest chains, the Hoare and Rahman chain, Kimura's continuous-time chain for DNA evolution, a light bulb chain, and random walks on some specific graphs.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Reference25 articles.

1. One bulb? Two bulbs? How many bulbs light up—a discrete probability problem involving dermal patches;Rao;Sankhyā,2007

2. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3