Author:
Griffin Philip S.,Maller Ross A.
Abstract
This paper is concerned with the behaviour of a Lévy process when it crosses over a positive level, u, starting from 0, both as u becomes large and as u becomes small. Our main focus is on the time, τu, it takes the process to transit above the level, and in particular, on the stability of this passage time; thus, essentially, whether or not τu behaves linearly as u ↓ 0 or u → ∞. We also consider the conditional stability of τu when the process drifts to -∞ almost surely. This provides information relevant to quantities associated with the ruin of an insurance risk process, which we analyse under a Cramér condition.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献